4 research outputs found

    Assessment and attribution of mangrove forest changes in the Indian Sundarbans from 2000 to 2020

    Get PDF
    The Indian Sundarbans, together with Bangladesh, comprise the largest mangrove forest in the world. Reclamation of the mangroves in this region ceased in the 1930s. However, they are still subject to adverse environmental influences, such as sediment starvation due to migration of the main river channels in the Ganges–Brahmaputra delta over the last few centuries, cyclone landfall, wave action from the Bay of Bengal—changing hydrology due to upstream water diversion—and the pervasive effects of relative sea-level rise. This study builds on earlier work to assess changes from 2000 to 2020 in mangrove extent, genus composition, and mangrove ‘health’ indicators, using various vegetation indices derived from Landsat and MODIS satellite imagery by performing maximum likelihood supervised classification. We show that about 110 km 2 of mangroves disappeared within the reserve forest due to erosion, and 81 km 2 were gained within the inhabited part of Sundarbans Biosphere Reserve (SBR) through plantation and regeneration. The gains are all outside the contiguous mangroves. However, they partially compensate for the losses of the contiguous mangroves in terms of carbon. Genus composition, analyzed by amalgamating data from published literature and ground-truthing surveys, shows change towards more salt-tolerant genus accompanied by a reduction in the prevalence of freshwater-loving Heiritiera, Nypa, and Sonneratia assemblages. Health indicators, such as the enhanced vegetation index (EVI) and normalized differential vegetation index (NDVI), show a monotonic trend of deterioration over the last two decades, which is more pronounced in the sea-facing parts of the mangrove forests. An increase in salinity, a temperature rise, and rainfall reduction in the pre-monsoon and the post-monsoon periods appear to have led to such degradation. Collectively, these results show a decline in mangrove area and health, which poses an existential threat to the Indian Sundarbans in the long term, especially under scenarios of climate change and sea-level rise. Given its unique values, the policy process should acknowledge and address these threats

    Exploratory modelling of the impacts of sea-level rise on the Sundarbans mangrove forest, West Bengal, India

    No full text
    In this paper we conduct exploratory simulations of the possible evolution of the Indian Sundarbans mangroves to 2100 under a range of future sea-level rise (SLR) scenarios, considering the effects of both inundation and shoreline erosion. The Sea Level Affecting Marshes Model (SLAMM) is used to simulate habitat transitions due to inundation and these outputs are combined with an empirical model of SLR-driven shoreline erosion. A set of plausible climate-induced SLR scenarios are considered, together with delta subsidence and constrained vertical sediment accretion. Significant mangrove decline is found in all cases: the greater the rise in sea level the greater the losses. By the end of the century, the Indian Sundarbans mangroves could lose between 42 % and 80 % of their current area if current management is continued. Managed realignment could offset these losses but at the expense of productive land and the migration of the human population

    The development of a framework for the integrated assessment of SDG trade-offs in the Sundarban biosphere reserve

    No full text
    The United Nations Sustainable Development Goals (SDGs) and their corresponding targets are significantly interconnected, with many interactions, synergies, and trade-offs between individual goals across multiple temporal and spatial scales. This paper proposes a framework for the Integrated Assessment Modelling (IAM) of a complex deltaic socio-ecological system in order to analyze such SDG interactions. We focused on the Sundarban Biosphere Reserve (SBR), India, within the Ganges-Brahmaputra-Meghna Delta. It is densely populated with 4.4 million people (2011), high levels of poverty, and a strong dependence on rural livelihoods. It is adjacent to the growing megacity of Kolkata. The area also includes the Indian portion of the world’s largest mangrove forest––the Sundarbans––hosting the iconic Bengal Tiger. Like all deltaic systems, this area is subject to multiple drivers of environmental change operating across scales. The IAM framework is designed to investigate socio-environmental change under a range of explorative and/or normative scenarios and explore associated policy impacts, considering a broad range of subthematic SDG indicators. The following elements were explicitly considered: (1) agriculture; (2) aquaculture; (3) mangroves; (4) fisheries; and (5) multidimensional poverty. Key questions that can be addressed include the implications of changing monsoon patterns, trade-offs between agriculture and aquaculture, or the future of the Sundarbans’ mangroves under sea-level rise and different management strategies. The novel, high-resolution analysis of SDG interactions allowed by the IAM will provide stakeholders and policy makers the opportunity to prioritize and explore the SDG targets that are most relevant to the SBR and provide a foundation for further integrated analysi
    corecore